Gradient Limitations in Room Temperature and Superconducting Acceleration Structures

نویسنده

  • N. A. Solyak
چکیده

Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of ~200 ns pulses for breakdown rate of ~10 -7 . Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R&D program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconducting H-mode Structures for Medium Energy Beams

Room temperature IH-type drift tube structures are used at different places now for the acceleration of ions with mass over charge ratios up to 65 and velocities between 0.016 c and 0.1 c. These structures have a high shunt impedance and allow the acceleration of very intense beams at high accelerating gradients. The overall power consumption of room temperature IHmode structures is comparable ...

متن کامل

Summary Report of Working Group 3: Laser and High-Gradient Structure-Based Acceleration

Working Group (WG) 3 assessed current challenges in developing advanced accelerators based on RF and laser-driven electromagnetic (EM) structures and surveyed the state-of-the-art research and methods addressing these challenges. A critical challenge for EM structures is the gradient limitation imposed by RF breakdown, pulsed heating, dark current, quench, thermal breakdown and other factors, d...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

A Superconductive, Low Beta Single Gap Cavity for a High Intensity Proton Linac

The TRASCO project for nuclear waste transmutation [1] requires a 5-100 MeV linac for acceleration of a 30 mA proton beam. Generally, room temperature Drift Tube Linac structures are used in this energy range; however, since the high duty cycle required for high current beams implies a very high power density on the resonators walls, the superconducting solution would offer many advantages. Amo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008